DOSAGGI.

1. Acqua ossigenata (I).

Reattivi
KMnO₄ soluzione a titolo noto (0,1...N); H₂SO₄ soluzione 1 : 5 (trattato a caldo con KMnO₄ diluito fino a colorazione persistente rosa pallido)

Reazione
\[2 \text{MnO}_4^- + 6 \text{H}^+ + 5 \text{H}_2\text{O}_2 \rightarrow 2 \text{Mn}^{2+} + 5 \text{O}_2 + 8 \text{H}_2\text{O} \]

Calcolo
\[\frac{\text{ml}_{\text{KMnO}_4} \cdot N_{\text{KMnO}_4} \cdot 10 \cdot 17,01 \cdot 100}{1000 \cdot V} = \text{H}_2\text{O}_2 \% \text{ (p/v)} \]

oppure:
\[\frac{\text{ml}_{\text{KMnO}_4} \cdot N_{\text{KMnO}_4} \cdot 10 \cdot 5,6}{V} = \text{volumi di O}_2 \]
Procedimento

Si preleva un esatto volume « V » (in ml) del prodotto commerciale (2) tale che, dopo diluizione, in matraccio tarato da 250 ml, dia una soluzione di concentrazione dell’ordine dello 0,3% in vol. (circa 1 volume di O₃).

In beuta da 300 ml si prelevano 25 ml di questa soluzione aggiungendo 150÷200 ml di acqua e 20 ml di H₂SO₄ (1 : 5). Si titola, agitando, con la soluzione standard di KMnO₄ fino a rosa persistente per almeno 30 secondi.

Note

(1) L’acqua ossigenata può comportarsi, in ambiente acido, da ossidante verso sostanze riducenti (es.: Fe³⁺, J⁻, Sn⁴⁺) secondo la reazione:

\[\text{H}_2\text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \rightarrow 2 \text{H}_2\text{O} \quad E_0 = +1,77 \text{ V} \]

Tale potere ossidante diminuisce con l’aumentare del pH. Infatti, l’H₂O₂ presenta deboli proprietà acide per cui in acqua si ha l’equilibrio:

\[\text{H}_2\text{O}_2 \rightarrow \text{H}^+ + \text{HO}_2^- \quad K = 2,4 \cdot 10^{-10} \]

questo, in ambiente alcalino, è spostato verso la formazione di HO₂⁻, che può reagire secondo il sistema:

\[\text{HO}_2^- + \text{H}_2\text{O} + 2 \text{e}^- \rightarrow 3 \text{OH}^- \quad E_0 = +0,88 \text{ V} \]

Ne risulta che le proprietà ossidanti dell’H₂O₂ sono più spiccate in ambiente acido che non in ambiente alcalino. L’H₂O₂, inoltre, può comportarsi da riducente verso sistemi ossidanti, secondo la reazione:

\[\text{H}_2\text{O}_2 \rightarrow 2 \text{H}^+ + \text{O}_2 + 2 \text{e}^- \quad E_0 = +0,682 \text{ V} \]

Il dosaggio dell’H₂O₂ può essere pertanto effettuato utilizzando le proprietà ossidanti verso sistemi di modesto potenziale di ossidazione (es.: I₂/3I⁻) (v. pag. 236) o le proprietà riducenti verso sistemi ad elevato potenziale di ossidazione (es.: MnO₄⁻/Mn²⁺; Ce⁴⁺/Ce³⁺). In questo ultimo caso, bisogna tener conto che, se la soluzione di H₂O₂ è stata stabilitizzata con sostanze riducenti (es.: urea ed altre sostanze organiche), queste costituiscono interferenza nel dosaggio con soluzioni di KMnO₄ o di Ce⁴⁺. In ogni caso, il peso equivalente dell’H₂O₂ è eguale ad H₂O₂/2 = 17,01; del resto, un equivalente di H₂O₂ corrisponde a 5,6 litri di O₃ (a condizioni normali).

(2) L’acqua ossigenata è un prodotto di notevole importanza farmaceutica ed industriale; il valore commerciale è indicato dal « titolo » che rappresenta il contenuto di prodotto attivo, che può essere espresso in:

a) Volumi: volumi di ossigeno (a 0 °C e a 760 mm Hg) ottenibili dalla decomposizione dell’H₂O₂ presente in un volume unitario del prodotto commerciale;

b) % in volume: grammi di H₂O₂ in 100 ml di soluzione.

Ricordando che il peso molecolare dell’H₂O₂ è 34,02 e che dalla decomposizione di una mole (H₂O₂ → H₂O + 1/2 O₂) si ottengono 11,2 litri di O₂ (a condizioni normali), il titolo in volumi può essere trasformato in % in volume moltiplicandolo per il valore del rapporto 3,402/11,2 = 0,3038; viceversa, i « volumi » sono ricavabili moltiplicando il % in volume per il valore del rapporto 11,2/3,402 = 3,292.

Le soluzioni piuttosto concentrate di H₂O₂ sono poco stabili e la loro stabilizzazione è ottenuta per aggiunta di acidi (es.: acetico, fosforico, solforico) oppure di alcoli, acetanile, urea, stannato di sodio, fosfati o polifosfati; esse possono contenere anche acido ossalico aggiunto a scopo di frode. Le soluzioni concentrate di H₂O₂ vanno conservate in recipienti di polietene o di vetro internamente paraffinato, perché le piccole rugosità del vetro comune possono catalizzare la reazione di decomposizione.